当前位置: 首页 > 团队成员 > 教师 > 正文

童浩 教授

【来源: | 发布日期:2017-07-09 】

姓 名: 童 浩

职称:教授、博导  (国家高层次青年人才)

职务:集成电路学院院长助理

 电子信箱:tonghao@hust.edu.cn


个人简介:

华中科技大学教授、博导,入选国家高层次青年人才,现任集成电路学院院长助理,兼任华为布尔实验室主任、中国半导体三维集成制造产业联盟副秘书长、湖北省薄膜测试工程技术研究中心主任,当选IEEE Senior Member、中国真空学会薄膜专委会委员、中国材料与试验标准化委员会FC00领域委员,先后获批3551人才、武汉市晨光计划、武汉英才-产业领军人才、湖北省青年拔尖人才、湖北省杰出青年基金、教育部“CJ学者”青年学者等,是国家重点研发计划项目会评专家、国自科基金通讯评议专家。师从长江学者缪向水教授和产业专家杨道虹博士,一直从事信息存储材料、器件及芯片相关研究,作为负责人主持国家863计划课题、国家02重大专项子课题(1600万)、国家重点研发计划任务、3项国家自然科学基金项目以及华为千万级横向课题、湖北省重点研发计划项目、湖北省杰出青年基金项目等项目十余项。在IEEE EDL、IEEE TED、IEEE TIE、Material Horizons、Adv. Funct. Mater.、APL等微电子领域国际主流期刊发表SCI论文70余篇,授权发明专利80余项(其中授权美国发明专利12项),在相变存储材料及芯片方面取得重要进展,专利产品获评“湖北省十大科技事件”,技术获评2020年湖北省技术发明一等奖(排名第2);3D PCM技术正与国内头部企业合作进行产业化开发,技术获评2022年“华为奥林帕斯先锋奖”(排名第2)。与业内知名企业合作密切,经学校批准兼任华中科技大学-OPPO***联合实验室主任、华中科技大学-长江存储***联合实验室技术委员会委员。在承担繁重科研任务的同时,重视教书育人,获评“华为奖教金”、“湖北省优秀学士学位论文指导教师”及学院“我最喜爱的教师班主任”等。


研究方向:

相变存储器及三维相变存储器

选通管及OTS存储器芯片

基于相变材料的存、算、通、显一体化芯片


招生信息:

招生学院:集成电路学院

招生类型:博士/硕士研究生

招生专业:

        学术学位:集成电路科学与工程/电子科学与技术

        专业学位:集成电路工程/新一代电子信息技术/软件工程

招生方向:相变存储器芯片、OTS选通器件及OTS存储器芯片、基于相变材料的存、算、通、显一体化芯片

团队共同培养,科研经费充足,平台条件优越,学习氛围浓厚,产业深度合作,就业情况很好!欢迎具有电子、光电、物理、材料、化学等相关专业背景的学生前来攻读硕士和博士学位,具体信息请与我联系。也欢迎本科生加入实验室开展科研工作。


承担的代表性科研项目:

1)国家02重大专项子课题,3D X-Point存储器关键技术研究,联合负责人,2017年-2019年,1600万元(共同主持)

2)国家863计划课题,抗热串扰、低电流相变存储材料及器件关键技术,负责人,2014年-2016年,471万元(主持)

3)国家重点研发计划项目子课题,纳米信息器件的可靠性评价与性能检测,负责人,2022年-2026年,150万元(主持)

4)国家自然科学基金面上项目,基于电输运分析的Te基OTS选通管机理及性能调控研究,负责人,2022年-2025年,57万元(主持)

5)国家自然科学基金面上项目,基于GeSbTe纳米线无序度调控的非熔融相变机理及性能研究,负责人,2018年-2021年,63万元(主持)

6)国家自然科学基金青年项目,纳米尺度相变记录材料的制备及相变机理研究,负责人,2014年-2016年,25万元(主持)

7)华为公司横向课题,***产品***研究,负责人,2020年-2022年,1238万元(主持)

8)OPPO公司横向课题,华中科技大学-OPPO***联合实验室项目,负责人,2022年-2024年,500万元(主持)

9)湖北省杰出青年基金项目,三维相变存储器高速开关机制及可靠性研究,2021年-2024年,30万元(主持)

10)湖北省青年拔尖人才计划项目,负责人,2021-2023年,60万元(主持)

11)湖北省重点研发计划项目,高速三维相变存储器集成技术研究,负责人,2020年-2022年,50万元(主持)

12)湖北省技术创新专项重大项目课题,3D存储器芯片下一代技术研究,负责人,2018年-2019年,160万元(主持)

13)湖北省重大仪器专项,***热分析仪的开发与应用,负责人,2013年-2014年,100万元(主持)

14)华为公司横向课题,3D PCM介质***,负责人,2019年,123万元(主持)

15)华为公司横向课题,3D PCM存储介质***,负责人,2020年,135万(主持)

16)华为公司横向课题,***选通管***,负责人,2021年,120万(主持)

17)华为公司横向课题,高速高密度的新型OTS-only存储器研究,负责人,2023年(主持)

18)华为公司创新研究计划项目,新型存储器技术研究,负责人,2013年-2014年,20万元(主持)


代表性论文:

[1] "All van der Waals stacking ferroelectric field-effect transistor based on In2Se3 for high-density memory," X. J. Wang, Z. Y. Feng, J. W. Cai, H. Tong* and X. S. Miao, SCIENCE CHINA Information Sciences.

[2] "Controllable ON-Resistance and its Thermal-Induced Channel Expansive Model in Ovonic Threshold Switch Selector," Z. Q. Chen, L. Wang, W. M. Cheng, H. Tong* and X. S. Miao, IEEE Transactions on Electron Devices, vol.70 no.1, pp. 366-370, Jan. 2023, DOI: 10.1109/TED.2022.3224702.

[3] "Enhanced Stretch ability towards Flexible and Wearable Reflective Display Coating using Chalcogenide Phase Change Materials," Q. S. Tan, Y. H. Chang, Q. He, H. Tong* and X. S. Miao, Optics Express, Vol. 31, Issue 1, pp. 75-85 (2023). DOI: 10.1364/OE.464011

[4] "Joule heating induced non-melting phase transition and multi-level conductance in MoTe2 based phase change memory," Z. Yang, D. Y. Zhang, J. W. Cai, C. T. Gong, Q. He, M. Xu, H. Tong* and X. S. Miao, Applied Physics Letters, vol. 121, no. 20, 2022. DOI: 10.1063/5.0127160

[5] "Failure mechanism investigation and endurance improvement in Te-rich Ge–Te based ovonic threshold switching selectors," L. Wang, J. Y. Wen, R. J. Zhu, J. X. Chen, H. Tong* and X. S. Miao, Applied Physics Letters, vol.121 no.19,2022. DOI: 10.1063/5.0127177

[6] "Improved multilevel storage capacity in Ge2Sb2Te5-based phase-change memory using a high-aspect-ratio lateral structure," R. Zhao, M. He, L. Wang, Z. Chen, X. Cheng, H. Tong*, and X. S. Miao, Science China Materials, 2022. DOI: 10.1007/s40843-022-2028-7

[7] "Designing Conductive-Bridge Phase-Change Memory to Enable Ultralow Programming Power," Z. Yang, B. W. Li, J. J. Wang, X. D. Wang, M. Xu, H. Tong, X. M. Cheng, L. Lu, C. L. Jia, M. Xu*, X. S. Miao*, W. Zhang*, and E. Ma, Adv Sci (Weinh), vol. 9, no. 8, p. e2103478, Mar 2022. DOI: 10.1002/advs.202103478

[8] "In-Memory Search with Phase Change Device-based Ternary Content Addressable Memory," L. Yang, R. Z. Zhao, Y. J. Li*, H. Tong*, Y. Yu, and X. Miao, IEEE Electron Device Letters, pp. 1-1, 2022. DOI: 10.1109/led.2022.3179736

[9] "Resistance Drift-Reduced Multilevel Storage and Neural Network Computing in Chalcogenide Phase Change Memories by Bipolar Operation," X. Li, Q. He, H. Tong*, and X. S. Miao, IEEE Electron Device Letters, vol. 43, no. 4, pp. 565-568, 2022. DOI: 10.1109/led.2022.3154440

[10] "Low-loss ultrafast and nonvolatile all-optical switch enabled by all-dielectric phase change materials," Q. He, Z. Liu, Y. Lu, G. Ban, H. Tong*, Y. Wang*, and X. S. Miao, iScience, vol. 25, no. 6, p. 104375, Jun 17 2022. DOI: 10.1016/j.isci.2022.104375

[11] "Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications," M. Xu, R. Gu, C. Qiao*, H. Tong, X. Cheng, C.-Z. Wang, K.-M. Ho, S. Wang, X. Miao, and M. Xu*, Journal of Materials Chemistry C, vol. 9, no. 25, pp. 8057-8065, 2021. DOI: 10.1039/d1tc01433a

[12] "A high speed asymmetric T-shape cell in NMOS-selected phase change memory chip," J. H. Wang, J. Zhou, W. L. Zhou, H. Tong, D. Q. Huang, J. J. Sun, L. Zhang, X. M. Long, Y. Chen, L. W. Qu, and X. S. Miao*, Solid-State Electronics, vol. 81, pp. 157-162, 2013. DOI: 10.1016/j.sse.2012.12.011

[13] "Three Resistance States Achieved by Nanocrystalline Decomposition in GeGaSb Compound for Multilevel Phase Change Memory," L. Zhang, X. Mai, R. Gu, L. Liu, C. Xiong, Z. Yang, H. Tong, X. Cheng, M. Xu*, P. Zhou*, and X. S. Miao*, Advanced Electronic Materials, vol. 7, no. 5, 2021. DOI: 10.1002/aelm.202100164

[14] "Performance Improvement of GeTex-Based Ovonic Threshold Switching Selector by C Doping," L. Wang, W. Cai, D. He, Q. Lin, D. Wan, H. Tong*, and X. S. Miao, IEEE Electron Device Letters, vol. 42, no. 5, pp. 688-691, 2021. DOI: 10.1109/led.2021.3064857

[15] "Selecting and Optimizing threshold switching materials and devices for stochastic neuron," K. Wang, Q. Hu, Q. Lin, D. Zhang, Y. He*, H. Tong*, and X. S. Miao, presented at the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2021.

[16] "Threshold switching memristor-based stochastic neurons for probabilistic computing," K. Wang, Q. Hu, B. Gao, Q. Lin, F. W. Zhuge, D. Y. Zhang, L. Wang, Y. H. He*, R. H. Scheicher, H. Tong*, and X. S. Miao*, Mater Horiz, vol. 8, no. 2, pp. 619-629, Feb 1 2021. DOI: 10.1039/d0mh01759k

[17] "10 MA cm2 current density in nanoscale conductive bridge threshold switching selector via densely localized cation sources," Q. Lin, J. Feng, J. Yuan, L. Liu, J. K. Eshraghian, H. Tong*, M. Xu*, X. Wang, and X. S. Miao*, Journal of Materials Chemistry C, vol. 9, no. 41, pp. 14799-14807, 2021. DOI: 10.1039/d1tc02150h

[18] "Experimental evidence for non-purely electric field-induced threshold switching and modified thermal-assisted model in GeTe phase change material," Z. Q. Chen, H. Tong*, X. Li, L. Wang, R. Zhao, W. Gu, and X. S. Miao, Applied Physics Letters, vol. 118, no. 20, 2021. DOI: 10.1063/5.0048883

[19] "Capacitance Behavior With Voltage Bias in Phase-Change Memory for Fast Operation," Z. Q. Chen, H. Tong, X. Li, L. Wang, W. Cai, and X. S. Miao*, IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5592-5597, 2021. DOI: 10.1109/ted.2021.3114264

[20] "Modeling and Simulations of the Integrated Device of Phase Change Memory and Ovonic Threshold Switch Selector With a Confined Structure," Z. Q. Chen, H. Tong*, W. Cai, L. Wang, and X. S. Miao*, IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1616-1621, 2021. DOI: 10.1109/ted.2021.3059436

[21] "Characterizations of electronic and optical properties of Sb-based phase-change material stabilized by alloying Cr," C. Chen, J. Lin, X. Mai, C. Qiao*, H. Tong, X. Cheng, S. Wang, C.-Z. Wang, K.-M. Ho, M. Xu*, and X. Miao, Applied Physics Letters, vol. 118, no. 4, 2021. DOI: 10.1063/5.0034533

[22] "Polyamorphism in K2Sb8Se13 for multi-level phase-change memory," M. Xu, C. Qiao, K.-H. Xue, H. Tong, X. Cheng, S. Wang, C.-Z. Wang, K.-M. Ho, M. Xu*, and X. S. Miao, Journal of Materials Chemistry C, vol. 8, no. 19, pp. 6364-6369, 2020. DOI: 10.1039/d0tc01089h

[23] "Recent Advances on Neuromorphic Devices Based on Chalcogenide PhaseChange Materials," M. Xu*, X. Mai, J. Lin, W. Zhang, Y. Li, Y. H. He, H. Tong, X. Hou, P. Zhou*, and X. S. Miao*, Advanced Functional Materials, vol. 30, no. 50, 2020. DOI: 10.1002/adfm.202003419

[24] "Suppressed resistance drift from short range order of amorphous GeTe ultrathin films," P. Ma, H. Tong, M. Xu, X. Cheng, and X. Miao*, Applied Physics Letters, vol. 117, no. 2, 2020. DOI: 10.1063/5.0009362

[25] "Controlled Memory and Threshold Switching Behaviors in a Heterogeneous Memristor for Neuromorphic Computing," H. Y. Li, X. D. Huang, J. H. Yuan, Y. F. Lu, T. Q. Wan, Y. Li*, K. H. Xue*, Y. H. He, M. Xu, H. Tong, and X. S. Miao, Advanced Electronic Materials, vol. 6, no. 8, 2020. DOI: 10.1002/aelm.202000309

[26] "An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing," Q. Hu, B. Dong, L. Wang, E. Huang, H. Tong*, Y. S. He*, M. Xu, and X. S. Miao, Chinese Physics B, vol. 29, no. 7, 2020. DOI: 10.1088/1674-1056/ab892a

[27] "Iron-based metallic glass for improved resolution, maskless phase-change photolithography," C. He, Z. Yang, C. Chen, H. Tong, and X. S. Miao*, Applied Optics, vol. 59, no. 18, 2020. DOI: 10.1364/ao.393682

[28] "Magnetic Transition of Metallic PhaseChange Materials," C. He, C. Qiao, Z. Yang, W. Cheng, H. Tong, and X. Miao*, physica status solidi (RRL) Rapid Research Letters, vol. 15, no. 3, 2020. DOI: 10.1002/pssr.202000425

[29] ""Stickier"-Surface Sb2Te3 Templates Enable Fast Memory Switching of Phase Change Material GeSb2Te4 with Growth-Dominated Crystallization," J. Feng, A. Lotnyk, H. Bryja, X. Wang, M. Xu, Q. Lin, X. Cheng*, M. Xu*, H. Tong, and X. S. Miao*, ACS Appl Mater Interfaces, vol. 12, no. 29, pp. 33397-33407, Jul 22 2020. DOI: 10.1021/acsami.0c07973

[30] "A Behavioral Model of Digital Resistive Switching for Systems Level DNN Acceleration," J. K. Eshraghian*, Q. Lin, X. Wang, H. H. C. Iu, Q. Hu, and H. Tong, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 956-960, 2020. DOI: 10.1109/tcsii.2020.2979847

[31] "Strong interface scattering induced low thermal conductivity in Bi-based GeTe/Bi2Te3 superlattice-like materials," Y. Zhou, K. Huang, L. Zhou, X. Cheng, M. Xu, H. Tong*, and X. S. Miao, RSC Adv, vol. 9, no. 17, pp. 9457-9461, Mar 22 2019. DOI: 10.1039/c9ra01485c

[32] "Resistance Drift Suppression Utilizing GeTe/Sb2Te3 SuperlatticeLike PhaseChange Materials," L. Zhou, Z. Yang, X. Wang, H. Qian, M. Xu, X. Cheng, H. Tong*, and X. S. Miao*, Advanced Electronic Materials, vol. 6, no. 1, 2019. DOI: 10.1002/aelm.201900781

[33] "Stabilizing amorphous Sb by adding alien seeds for durable memory materials," M. Xu, B. Li, K. Xu, H. Tong, X. Cheng, M. Xu*, and X. Miao, Phys Chem Chem Phys, vol. 21, no. 8, pp. 4494-4500, Feb 20 2019. DOI: 10.1039/c8cp07446a

[34] "Understanding CrGeTe3: an abnormal phase change material with inverse resistance and density contrast," M. Xu, Y. Guo, Z. Yu, K. Xu, C. Chen, H. Tong, X. Cheng, M. Xu*, S. Wang, C. Z. Wang, K.-M. Ho, and X. S. Miao, Journal of Materials Chemistry C, vol. 7, no. 29, pp. 9025-9030, 2019. DOI: 10.1039/c9tc02963j

[35] "Ultra-Low Program Current and Multilevel Phase Change Memory for High-Density Storage Achieved by a Low-Current SET Pre-Operation," M. He, D. He, H. Qian, Q. Lin, D. Wan, X. Cheng, M. Xu, H. Tong*, and X. S. Miao, IEEE Electron Device Letters, vol. 40, no. 10, pp. 1595-1598, 2019. DOI: 10.1109/led.2019.2935890

[36] "Increasing the Atomic Packing Efficiency of Phase-Change Memory Glass to Reduce the Density Change upon Crystallization," Q. Wu, M. Xu, K. Xu, H. Qian, H. Tong, X. Cheng, L. Wu, M. Xu*, and X. S. Miao*, Advanced Electronic Materials, vol. 4, no. 9, 2018. DOI: 10.1002/aelm.201800127

[37] "Self-screening induced abnormal stability of ferroelectric phase in GeTe ultrathin films," X. Wang, L. Zhou, J. Feng, S. Wang, H. Qian, H. Tong*, and X. S. Miao*, Applied Physics Letters, vol. 113, no. 23, 2018. DOI: 10.1063/1.5049888

[38] "Observation of carrier localization in cubic crystalline Ge2Sb2Te5 by field effect measurement," H. Qian, H. Tong*, M. Z. He, H. K. Ji, L. J. Zhou, M. Xu, and X. S. Miao, Sci Rep, vol. 8, no. 1, p. 486, Jan 11 2018. DOI: 10.1038/s41598-017-18964-w

[39] "Dual-Layer Selector With Excellent Performance for Cross-Point Memory Applications," Q. Lin, Y. Li, M. Xu, Q. Cheng, H. Qian, J. Feng, H. Tong*, and X. S. Miao*, IEEE Electron Device Letters, vol. 39, no. 4, pp. 496-499, 2018. DOI: 10.1109/led.2018.2808465

[40] "A Selector with Special Design for High on-current and Selectivity," Q. Lin, Q. Cheng, H. Tong, X. S. Miao, and Ieee, presented at the PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUITS, TECHNOLOGIES AND APPLICATIONS (ICTA 2018), 2018.

[41] "Gold fillings unravel the vacancy role in the phase transition of GeTe," J. Feng, M. Xu, X. Wang, Q. Lin, X. Cheng, M. Xu*, H. Tong, and X. S. Miao*, Applied Physics Letters, vol. 112, no. 7, 2018. DOI: 10.1063/1.5006718

[42] "Manipulation of dangling bonds of interfacial states coupled in GeTe-rich GeTe/Sb2Te3 superlattices," Z. Yang, M. Xu, X. Cheng, H. Tong*, and X. S. Miao, Sci Rep, vol. 7, no. 1, p. 17353, Dec 11 2017. DOI: 10.1038/s41598-017-17671-w

[43] "Effects of Thickness and Temperature on Thermoelectric Properties of Bi2Te3-Based Thin Films," D.-D. Yang, H. Tong, L. J. Zhou, and X. S. Miao*, Chinese Physics Letters, vol. 34, no. 12, 2017. DOI: 10.1088/0256-307x/34/12/127301

[44] "Positive dependence of thermal conductivity on temperature in GeTe/Bi2Te3 superlattices: the contribution of electronic and particle wave lattice thermal conductivity," H. Tong, F. Lan, Y. J. Liu, L. J. Zhou, X. J. Wang, Q. He, K. Z. Wang, and X. S. Miao*, Journal of Physics D: Applied Physics, vol. 50, no. 35, 2017. DOI: 10.1088/1361-6463/aa7c94

[45] "Variations of Local Motifs around Ge Atoms in Amorphous GeTe Ultrathin Films," P. Ma, H. Tong, T. Huang, M. Xu, N. Yu, X. Cheng, C.-J. Sun, and X. S. Miao*, The Journal of Physical Chemistry C, vol. 121, no. 2, pp. 1122-1128, 2017. DOI: 10.1021/acs.jpcc.6b09841

[46] "Color printing enabled by phase change materials on paper substrate," H.-K. Ji, H. Tong, H. Qian, N. Liu, M. Xu, and X. S. Miao*, AIP Advances, vol. 7, no. 12, 2017. DOI: 10.1063/1.5009945

[47] "Low work function of crystalline GeTe/Sb2Te3superlattice-like films induced by Te dangling bonds," H. Qian, H. Tong*, L. J. Zhou, B. H. Yan, H. K. Ji, K. H. Xue, X. M. Cheng, and X. S. Miao, Journal of Physics D: Applied Physics, vol. 49, no. 49, 2016. DOI: 10.1088/0022-3727/49/49/495302

[48] "Non-binary Colour Modulation for Display Device Based on Phase Change Materials," H. K. Ji*, H. Tong*, H. Qian, Y. J. Hui, N. Liu, P. Yan, and X. S. Miao, Sci Rep, vol. 6, p. 39206, Dec 19 2016. DOI: 10.1038/srep39206

[49] "Threshold-voltage modulated phase change heterojunction for application of high density memory," B. Yan, H. Tong*, H. Qian, and X. Miao, Applied Physics Letters, vol. 107, no. 13, 2015. DOI: 10.1063/1.4931126

[50] "Disorder-induced anomalously signed Hall effect in crystalline GeTe/Sb2Te3 superlattice-like materials," H. Tong, N. N. Yu, Z. Yang, X. M. Cheng, and X. S. Miao*, Journal of Applied Physics, vol. 118, no. 7, 2015. DOI: 10.1063/1.4928630

[51] "Work function contrast and energy band modulation between amorphous and crystalline Ge2Sb2Te5 films," H. Tong, Z. Yang, N. N. Yu, L. J. Zhou, and X. S. Miao*, Applied Physics Letters, vol. 107, no. 8, 2015. DOI: 10.1063/1.4929369

[52] "Structure and phonon behavior of crystalline GeTe ultrathin film," N. N. Yu, H. Tong, and X. S. Miao*, Applied Physics Letters, vol. 105, no. 12, 2014. DOI: 10.1063/1.4894864

[53] "Lattice strain induced phase selection and epitaxial relaxation in crystalline GeTe thin film," F. Tong, J. D. Liu, X. M. Cheng, J. H. Hao, G. Y. Gao, H. Tong, and X. S. Miao*, Thin Solid Films, vol. 568, pp. 70-73, 2014. DOI: 10.1016/j.tsf.2014.08.006

[54] "Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems," Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang, H. Sun, H. Tong, X. Cheng, and X. S. Miao*, Sci Rep, vol. 4, p. 4906, May 9 2014. DOI: 10.1038/srep04906

[55] "Local order of Ge atoms in amorphous GeTe nanoscale ultrathin films," N. N. Yu, H. Tong, J. Zhou, A. A. Elbashir, and X. S. Miao*, Applied Physics Letters, vol. 103, no. 6, 2013. DOI: 10.1063/1.4818132

[56] "A high speed asymmetric T-shape cell in NMOS-selected phase change memory chip," J. H. Wang, J. Zhou, W. L. Zhou, H. Tong, D. Q. Huang, J. J. Sun, L. Zhang, X. M. Long, Y. Chen, L. W. Qu, and X. S. Miao*, Solid-State Electronics, vol. 81, pp. 157-162, 2013. DOI: 10.1016/j.sse.2012.12.011

[57] "Dynamic switching characteristic dependence on sidewall angle for phase change memory," X. M. Long, X. S. Miao*, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, Solid-State Electronics, vol. 67, no. 1, pp. 1-5, 2012. DOI: 10.1016/j.sse.2011.07.001

[58] "Phonon Properties and Low Thermal Conductivity of Phase Change Material with Superlattice-Like Structure," P. Long, H. Tong, and X. S. Miao*, Applied Physics Express, vol. 5, no. 3, 2012. DOI: 10.1143/apex.5.031201

[59] "Insulator-metal transition in GeTe/Sb2Te3 multilayer induced by grain growth and interface barrier," H. Tong, X. S. Miao*, Z. Yang, and X. M. Cheng, Applied Physics Letters, vol. 99, no. 21, 2011. DOI: 10.1063/1.3664132

[60] "Thermal conductivity of chalcogenide material with superlatticelike structure," H. Tong, X. S. Miao*, X. M. Cheng, H. Wang, L. Zhang, J. J. Sun, F. Tong, and J. H. Wang, Applied Physics Letters, vol. 98, no. 10, 2011. DOI: 10.1063/1.3562610

[61] "Anomalous second ferromagnetic phase transition as a signature of spinodal decomposition in Fe-doped GeTe diluted magnetic semiconductor," F. Tong, J. H. Hao, Z. P. Chen, G. Y. Gao, H. Tong, and X. S. Miao*, Applied Physics Letters, vol. 99, no. 20, 2011. DOI: 10.1063/1.3663550

[62] "Effective method to identify the vacancies in crystalline GeTe," F. Tong, X. S. Miao*, Y. Wu, Z. P. Chen, H. Tong, and X. M. Cheng, Applied Physics Letters, vol. 97, no. 26, 2010. DOI: 10.1063/1.3531664